SEVENEN FRAMEWORK PROGRAMME

Design of thin-film nanocatalysts for on-chip fuel cell technology

Article FAU & CUP - CSC 7

The Mechanism of Hydrocarbon Oxygenate Reforming: C—C Bond Scission, Carbon Formation, and Noble-Metal-Free Oxide Catalysts

A3-YLykhach-Fig3.png

Chem. Sus. Chem. 7, 77 (2014) - read more on Wiley pages

Yaroslava Lykhach1,*, Armin Neitzel1, Klára Ševčíková2, Viktor Johánek2, Nataliya Tsud2, Tomáš Skála2, Kevin C. Prince3,4, Vladimír Matolín2, and Jörg Libuda1,5,*

1 Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany, Fax: (+49) 9131-8528867, http://www.chemie.uni-erlangen.de/libuda

2 Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
3 Sincrotrone Trieste SCpA, Strada Statale 14, km 163.5, 34149 Basovizza-Trieste, Italy
4 IOM, Strada Statale 14, km 163.5, 34149 Basovizza-Trieste, Italy
5 Erlangen Catalysis Resource Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany

Towards a molecular understanding of the mechanism behind catalytic reforming of bioderived hydrocarbon oxygenates, we explore the C—C bond scission of C2 model compounds (acetic acid, ethanol, ethylene glycol) on ceria model catalysts of different complexity, with and without platinum. Synchrotron photoelectron spectroscopy reveals that the reaction pathway depends very specifically on both the reactant molecule and the catalyst surface. Whereas C—C bond scission on Pt sites and on oxygen vacancies involves intermittent surface carbon species, the reaction occurs without any carbon formation and deposition for ethylene glycol on CeO2(111).