SEVENEN FRAMEWORK PROGRAMME

Design of thin-film nanocatalysts for on-chip fuel cell technology

Article Angewandte Chemie Int'l Ed

Maximum Noble-Metal Efficiency in Catalytic Materials: Atomically Dispersed Surface Platinum

A13-ABruix-AngewChemIE-Fig3.png

Angewandte Chemie Int'l Edition online published on June 11, 2014 read more on Wiley Online Library pages

Albert Bruix1, Yaroslava Lykhach3, Iva Matolínová5, Armin Neitzel3, Tomáš Skála5, Nataliya Tsud5, Mykhailo Vorokhta5, Vitaliy Stetsovych5, Klára Ševčíková5, Josef Mysliveček5, Roman Fiala5, Michal Václavů5, Kevin C. Prince7, Stéphanie Bruyère6, Valérie Potin6, Francesc Illas1, Vladimír Matolín5,*, Jörg Libuda3,4,*, Konstantin Neyman1,2,*,

1 Departament de Química Física and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona c/Martí i Franquès 1, 08028 Barcelona (Spain)
2 Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona (Spain)
3 Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg (Germany)
4 Erlangen Catalysis Resource Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen (Germany)
5 Department of Surface and Plasma Science, Charles University, V Holešovičkách 2, 18000 Prague (Czech Republic)
6 Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de Bourgogne, 9 Av. A. Savary, BP 47870, 21078 Dijon Cedex (France)
7 Sincrotrone Trieste SCpA and IOM, Strada Statale 14, km 163.5, 34149 Basovizza-Trieste (Italy)

Platinum is the most versatile element in catalysis, but it is rare and its high price limits large-scale applications, for example in fuel-cell technology. Still, conventional catalysts use only a small fraction of the Pt content, that is, those atoms located at the catalyst’s surface. To maximize the noble-metal efficiency, the precious metal should be atomically dispersed and exclusively located within the outermost surface layer of the material. Such atomically dispersed Pt surface species can indeed be prepared with exceptionally high stability. Using DFT calculations we identify a specific structural element, a ceria “nanopocket”, which binds Pt2+ so strongly that it withstands sintering and bulk diffusion. On model catalysts we experimentally confirm the theoretically predicted stability, and on real Pt-CeO2 nanocomposites showing high Pt efficiency in fuel-cell catalysis we also identify these anchoring sites.